Abstract
We study nonoscillation/oscillation of the dynamic equation $${(rx^\Delta)}^{\Delta}(t) + p(t)x(t)= 0 \quad {\rm for} t \in[t_0, \infty)_{\mathbb{T}},$$ where \({t_0 \in \mathbb{T}}\), \({{\rm sup} \mathbb{T} = \infty}\), \({r \in {\rm C}_{\rm rd}([t_0, \infty)_{\mathbb{T}}, \mathbb{R}^+)}\), \({p \in {\rm C}_{\rm rd}([t_0, \infty)_{\mathbb{T}}, {\mathbb{R}^+_0})}\). By using the Riccati substitution technique, we construct a sequence of functions which yields a necessary and sufficient condition for the nonoscillation of the equation. In addition, our results are new in the theory of dynamic equations and not given in the discrete case either. We also illustrate applicability and sharpness of the main result with a general Euler equation on arbitrary time scales. We conclude the paper by extending our results to the equation $${(rx^\Delta)}^{\Delta}(t) + p(t)x^\sigma(t)= 0 \quad {\rm for} t \in[t_0, \infty)_{\mathbb{T}},$$ which is extensively discussed on time scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.