Abstract
Abstract The stagnation-point flow of a second-grade fluid past a power law lubricated surface is considered in this paper. It is assumed that the fluid impinges on the wall obliquely. A suitable choice of similarity transformations reduces the governing partial differential equations into ordinary differential equations. The thin lubrication layer suggests that the interface conditions between the fluid and the lubricant can be imposed on the boundary. An implicit finite difference scheme known as the Keller-Box method is employed to obtain the numerical solutions. The effects of slip parameter and Weissenberg number on the fluid velocity and streamlines is discussed in the graphs. The limiting cases of partial-slip and no-slip can be deduced from the present solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.