Abstract
In this work, non-orthogonal multiple access (NOMA) in coordinated direct and relay transmission (CDRT) is introduced, where a base station (BS) directly communicates with user equipment 1 (UE1) while communicating with user equipment 2 (UE2) only through a relay. The main challenge of non-orthogonal CDRT can be solved by using the inherent property of NOMA that allows a receiver to obtain side information such as other UE's data for interference cancellation. Analytical expressions for outage probability and ergodic sum capacity are provided. It is shown that the proposed NOMA in CDRT provides remarkable performance gain compared with NOMA in non-coordinated direct and relay transmission (nCDRT); the sum capacity scaling of the proposed scheme is $\log \rho_b$ as signal-to-noise-ratio (SNR) $\rho_b$ increases, but $\frac{1}{2_{}}\log \rho_b$ for NOMA in nCDRT. Exact and closed-form expressions for outage probability of each stream for UE1 and UE2 are respectively derived, and it is shown that the achievable diversity orders for each stream are same as one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.