Abstract

This article presents the design and implementation of a software tool, PROXIMUS, for error-bounded approximation of high-dimensional binary attributed datasets based on nonorthogonal decomposition of binary matrices. This tool can be used for analyzing data arising in a variety of domains ranging from commercial to scientific applications. Using a combination of innovative algorithms, novel data structures, and efficient implementation, PROXIMUS demonstrates excellent accuracy, performance, and scalability to large datasets. We experimentally demonstrate these on diverse applications in association rule mining and DNA microarray analysis. In limited beta release, PROXIMUS currently has over 300 installations in over 10 countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.