Abstract

Multicompartment micelles (MCMs) containing acid and base sites in discrete domains are prepared from poly(norbornene)-based amphiphilic bottlebrush copolymers in aqueous media. The acid and base sites are localized in different compartments of the micelle, enabling the nonorthogonal reaction sequence: deacetalization - Knoevenagel condensation - Michael addition of acetals to 2-amino chromene derivatives. Computational simulations using dissipative particle dynamics (DPD) elucidated the bottlebrush composition required to effectively site-isolate the nonorthogonal catalysts. This contribution presents MCMs as a new class of nanostructures for one-pot multistep nonorthogonal cascade catalysis, laying the groundwork for the isolation of three or more incompatible catalysts to synthesize value-added compounds in a single reaction vessel, in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.