Abstract

We have investigated the nonohmic resistivity of a nondegenerate semiconductor in quantizing magnetic fields for the case where acoustic phonons are the dominant scattering mechanism. The type of I-V characteristics found depends upon which of three mechanism are dominant. The three mechanisms are due to collisional broadening, inelasticities due to the finite phonon energy and phonon drag. When collistion broadening is important, the nonlinearities in the current voltage characteristic arise only from electron heating, while when the inelasticities are dominant, there is also an intrinsic nonlinearity in the characteristic. Finally, when phonon drag is dominant, high frequency acoustoelectric amplification will occur when the Hall velocity exceeds the sound velocity, i.e. V H > S. For the case where inelasticities dominate, a region of negative differential resistance is obtained that should persist even when there is considerable optical phonon scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.