Abstract

An investigation was made into the non-Ohmic and dielectric properties of a Ca2Cu2Ti4O12 perovskite-type system. Compared to the traditional CaCu3Ti4O12-based composition, the imbalance between the Ca and Cu atoms caused the formation of a polycrystalline system presenting ∼33.3mol% of CaCu3Ti4O12 (traditional composition) and ∼66.7mol% of CaTiO3. As for non-Ohmic properties, the effect of this Ca and Cu atom imbalance was that a nonlinear electric behavior of ∼1500 was obtained. This high nonlinear electrical behavior emerged in detriment to the ultrahigh dielectric property frequently reported. The high non-Ohmic property was explained by the existence of Schottky-type barriers, whose formation mechanism may be similar to that proposed for traditional metal oxide non-Ohmic devices, according to similarities discussed herein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.