Abstract

We show how to triangulate a polygon without using any obtuse triangles. Such triangulations can be used to discretize partial differential equations in a way that guarantees that the resulting matrix is Stieltjes, a desirable property both for computation and for theoretical analysis. A simple divide-and-conquer approach would fail because adjacent subproblems cannot be solved independently, but this can be overcome by careful subdivision. Overlay a square grid on the polygon, preferably with the polygon vertices at grid points. Choose boundary cells so they can be triangulated without propagating irregular points to adjacent cells. The remaining interior is rectangular and easily triangulated. Small angles can also be avoided in these constructions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.