Abstract

An analytical model for predicting non-Newtonian purely viscous power law flow through isotropic granular porous media is proposed. Application of the method of volume averaging leads to macroscopic momentum transport equations describing the physical flow phenomena within the porous medium. The geometrical properties of the granular porous medium are incorporated through the introduction of a rectangular representative unit cell model. The relative positioning of neighbouring cells leads to staggered- and non-staggered arrays of solid constituents. Volume partitioning of the flow domain allows for the tortuosity to be expressed as a ratio of fluid volumes. In order to support the assumption of average geometrical isotropy of the unit cell model, a weighted average is performed over the different arrays. The coefficient obtained from the averaging procedure is based purely on physical principles. Through application of an asymptotic matching technique, the proposed model produces pressure gradient predictions for Reynolds numbers within the entire laminar flow regime. The analytical model is compared to published experimental data to verify the validity of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.