Abstract
An analysis of non-Newtonian effects on lubrication flows is presented based on the upper-convected Maxwell constitutive equation, which is the simplest viscoelastic model having a constant viscosity and relaxation time. By employing characteristic lubricant relaxation times in all order of magnitude analysis, a perturbation method is developed to analyze the flow of a non-Newtonian lubricant between two surfaces. The effect of viscoelasticity on the lubricant velocity and pressure fields is examined, and the influence of minimum film thickness on lubrication characteristics is investigated. Numerical simulations show a significant enhancement in the pressure field when the minimum film thickness is sufficiently small. This mechanism suggests that viscoelasticity does indeed produce a beneficial effect on lubrication performance, which is consistent with experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.