Abstract

The neutral theory of molecular evolution asserts that while many mutations are deleterious and rapidly eliminated from populations, those that we observe as polymorphisms within populations are functionally equivalent to each other and thus neutral with respect to fitness. Mitochondrial DNA (mtDNA) is widely used as a genetic marker in evolutionary studies and is generally assumed to evolve according to a strictly neutral model of molecular evolution. One prediction of the neutral theory is that the ratio of replacement (nonsynonymous) to silent (synonymous) nucleotide substitutions will be the same within and between species. We tested this prediction by measuring DNA sequence variation at the mitochondrially encoded NADH dehydrogenase subunit 3 (ND3) gene among 56 individual house mice, Mus domesticus. We also compared ND3 sequence from M. domesticus to ND3 sequence from Mus musculus and Mus spretus. A significantly greater number of replacement polymorphisms were observed within M. domesticus than expected based on comparisons to either M. musculus or M. spretus. This result challenges the conventional view that mtDNA evolves according to a strictly neutral model. However, this result is consistent with a nearly neutral model of molecular evolution and suggests that most amino acid polymorphisms at this gene may be slightly deleterious.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.