Abstract

In this paper we study Nonnegative Tensor Factorization (NTF) based on the Kullback---Leibler (KL) divergence as an alternative Csiszar---Tusnady procedure. We propose new update rules for the aforementioned divergence that are based on multiplicative update rules. The proposed algorithms are built on solid theoretical foundations that guarantee that the limit point of the iterative algorithm corresponds to a stationary solution of the optimization procedure. Moreover, we study the convergence properties of the optimization procedure and we present generalized pythagorean rules. Furthermore, we provide clear probabilistic interpretations of these algorithms. Finally, we discuss the connections between generalized Probabilistic Tensor Latent Variable Models (PTLVM) and NTF, proposing in that way algorithms for PTLVM for arbitrary multivariate probabilistic mass functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.