Abstract

Motivated by (and using tools from) communication complexity, we investigate the relationship between the following two ranks of a $0$-$1$ matrix: its nonnegative rank and its binary rank (the $\log$ of the latter being the unambiguous nondeterministic communication complexity). We prove that for partial $0$-$1$ matrices, there can be an exponential separation. For total $0$-$1$ matrices, we show that if the nonnegative rank is at most $3$ then the two ranks are equal, and we show a separation by exhibiting a matrix with nonnegative rank $4$ and binary rank $5$, as well as a family of matrices for which the binary rank is $4/3$ times the nonnegative rank.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.