Abstract

Simple dynamic systems representing time varying states of interconnected neurons may exhibit extremely complex behaviors when bifurcation parameters are switched from one set of values to another. In this paper, motivated by simulation results, we examine the steady states of one such system with bang-bang control and two real parameters. We found that nonnegative and negative periodic states are of special interests since these states are solutions of linear nonhomogeneous three-term recurrence relations. Although the standard approach to analyse such recurrence relations is the method of finding the general solutions by means of variation of parameters, we find novel alternate geometric methods that offer the tracking of solution trajectories in the plane. By means of this geometric approach, we are then able, without much tedious computation, to completely characterize the nonnegative and negative periodic solutions in terms of the bifurcation parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.