Abstract

Nonnegative matrix factorization (NMF) solves the following problem: find such nonnegative matrices A ∈ R + I × J and X ∈ R + J × K that Y ≅ AX , given only Y ∈ R I × K and the assigned index J ( K ⪢ I ⩾ J ). Basically, the factorization is achieved by alternating minimization of a given cost function subject to nonnegativity constraints. In the paper, we propose to use quadratic programming (QP) to solve the minimization problems. The Tikhonov regularized squared Euclidean cost function is extended with a logarithmic barrier function (which satisfies nonnegativity constraints), and then using second-order Taylor expansion, a QP problem is formulated. This problem is solved with some trust-region subproblem algorithm. The numerical tests are performed on the blind source separation problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.