Abstract
Nonnegative matrix factorization (NMF) approximates a given data matrix as a product of two low-rank nonnegative matrices, usually by minimizing the L2 or the KL distance between the data matrix and the matrix product. This factorization was shown to be useful for several important computer vision applications. We propose here two new NMF algorithms that minimize the Earth mover's distance (EMD) error between the data and the matrix product. The algorithms (EMD NMF and bilateral EMD NMF) are iterative and based on linear programming methods. We prove their convergence, discuss their numerical difficulties, and propose efficient approximations. Naturally, the matrices obtained with EMD NMF are different from those obtained with L2-NMF. We discuss these differences in the context of two challenging computer vision tasks, texture classification and face recognition, perform actual NMF-based image segmentation for the first time, and demonstrate the advantages of the new methods with common benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.