Abstract

One successful approach for audio source separation involves applying nonnegative matrix factorization (NMF) to a magnitude spectrogram regarded as a nonnegative matrix. This can be interpreted as approximating the observed spectra at each time frame as the linear sum of the basis spectra scaled by time-varying amplitudes. This paper deals with the problem of the unsupervised instrument-wise source separation of polyphonic signals based on an extension of the NMF approach. We focus on the fact that each piece of music is typically played on a handful of musical instruments, which allows us to assume that the spectra of the underlying audio events in a polyphonic signal can be grouped into a reasonably small number of clusters in the mel-frequency cepstral coefficient (MFCC) domain. Based on this assumption, we propose formulating factorization of a magnitude spectrogram and clustering of the basis spectra in the MFCC domain as a joint optimization problem and derive a novel optimization algorithm based on the majorization–minimization principle. Experimental results revealed that our method was superior to a two-stage algorithm that consists of performing factorization followed by clustering the basis spectra, thus showing the advantage of the joint optimization approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.