Abstract
Nonnegative matrix factorization (NMF) was popularized as a tool for data mining by Lee and Seung in 1999. NMF attempts to approximate a matrix with nonnegative entries by a product of two low-rank matrices, also with nonnegative entries. We propose an algorithm called rank-one downdate (R1D) for computing an NMF that is partly motivated by the singular value decomposition. This algorithm computes the dominant singular values and vectors of adaptively determined sub-matrices of a matrix. On each iteration, R1D extracts a rank-one submatrix from the original matrix according to an objective function. We establish a theoretical result that maximizing this objective function corresponds to correctly classifying articles in a nearly separable corpus. We also provide computational experiments showing the success of this method in identifying features in realistic datasets. The method is also much faster than other NMF routines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.