Abstract
Nonnegative Matrix Factorization (NMF), a relatively novel paradigm for dimensionality reduction, has been in the ascendant since its inception. It incorporates the nonnegativity constraint and thus obtains the parts-based representation as well as enhancing the interpretability of the issue correspondingly. This survey paper mainly focuses on the theoretical research into NMF over the last 5 years, where the principles, basic models, properties, and algorithms of NMF along with its various modifications, extensions, and generalizations are summarized systematically. The existing NMF algorithms are divided into four categories: Basic NMF (BNMF), Constrained NMF (CNMF), Structured NMF (SNMF), and Generalized NMF (GNMF), upon which the design principles, characteristics, problems, relationships, and evolution of these algorithms are presented and analyzed comprehensively. Some related work not on NMF that NMF should learn from or has connections with is involved too. Moreover, some open issues remained to be solved are discussed. Several relevant application areas of NMF are also briefly described. This survey aims to construct an integrated, state-of-the-art framework for NMF concept, from which the follow-up research may benefit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.