Abstract
Microarray data can be used to detect diseases and predict responses to therapies through classification models. However, the high dimensionality and low sample size of such data result in many computational problems such as reduced prediction accuracy and slow classification speed. In this paper, we propose a novel family of nonnegative least-squares classifiers for high-dimensional microarray gene expression and comparative genomic hybridization data. Our approaches are based on combining the advantages of using local learning, transductive learning, and ensemble learning, for better prediction performance. To study the performances of our methods, we performed computational experiments on 17 well-known data sets with diverse characteristics. We have also performed statistical comparisons with many classification techniques including the well-performing SVM approach and two related but recent methods proposed in literature. Experimental results show that our approaches are faster and achieve generally a better prediction performance over compared methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.