Abstract
Although significant efforts have been made in developing nonnegative blind source separation techniques, accurate separation of positive yet dependent sources remains a challenging task. In this paper, a joint correlation function of multiple signals is proposed to reveal and confirm that the observations after nonnegative mixing would have higher joint correlation than the original unknown sources. Accordingly, a new nonnegative least-correlated component analysis (n/LCA) method is proposed to design the unmixing matrix by minimizing the joint correlation function among the estimated nonnegative sources. In addition to a closed-form solution for unmixing two mixtures of two sources, the general algorithm of n/LCA for the multisource case is developed based on an iterative volume maximization (IVM) principle and linear programming. The source identifiability and required conditions are discussed and proven. The proposed n/LCA algorithm, denoted by n/LCA-IVM, is evaluated with both simulation data and real biomedical data to demonstrate its superior performance over several existing benchmark methods.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.