Abstract

In this paper we consider the inverse problem of constructing an n × n real nonnegative matrix A from the prescribed partial eigendata. We first give the solvability conditions for the inverse problem without the nonnegative constraint and then discuss the associated best approximation problem. To find a nonnegative solution, we reformulate the inverse problem as a monotone complementarity problem and propose a nonsmooth Newton-type method for solving its equivalent nonsmooth equation. Under some mild assumptions, the global and quadratic convergence of our method is established. We also apply our method to the symmetric nonnegative inverse problem and to the cases of prescribed lower bounds and of prescribed entries. Numerical tests demonstrate the efficiency of the proposed method and support our theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.