Abstract
AbstractManifold learning algorithms have been demonstrated to be effective for hyperspectral data dimension reduction (DR). However, the low dimensional feature representation resulted by traditional manifold learning algorithms could not preserve the nonnegative property of the hyperspectral data, which leads inconsistency with the psychological intuition of “combining parts to form a whole”. In this paper, we introduce a nonnegative discriminative manifold learning (NDML) algorithm for hyperspectral data DR, which yields a discriminative and low dimensional feature representation, with psychological and physical evidence in the human brain. Our method benefits from both the nonnegative matrix factorization (NMF) algorithm and the discriminative manifold learning (DML) algorithm. We apply the NDML algorithm to hyperspectral remote sensing image classification on HYDICE dataset. Experimental results confirm the efficiency of the proposed NDML algorithm, compared with some existing manifold learning based DR methods.Keywordsmanifold learningnonnegative matrix factorizationdimension reductionhypsrspectral data
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.