Abstract

Because of the well-known limitations of diffusion tensor imaging (DTI) in regions of low anisotropy and multiple fiber crossing, high angular resolution diffusion imaging (HARDI) and Q-Ball Imaging (QBI) are used to estimate the probability density function (PDF) of the average spin displacement of water molecules. In particular, QBI is used to obtain the diffusion orientation distribution function (ODF) of these multiple fiber crossing. As a probability distribution function, the orientation distribution function should be nonnegative which is not guaranteed in the existing methods. This paper proposes a novel technique to guarantee the nonnegative property of ODF by solving a convex optimization problem, which has a convex quadratic objective function and a constraint involving the nonnegativity requirement on the smallest Z-eigenvalue of the diffusivity tensor. Using convex analysis and optimization techniques, we first derive the optimality conditions of this convex optimization problem. Then, we propose a gradient descent algorithm to solve this problem. We also present formulas for determining the principal directions (maxima) of the ODF. Numerical examples on synthetic data as well as MRI data are displayed to demonstrate the significance of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.