Abstract

Transient heat dissipation in close-packed quasi-two-dimensional nanoline and three-dimensional nanocuboid hotspot systems is studied based on the phonon Boltzmann transport equation. It is found that, counterintuitively, the heat dissipation efficiency is not a monotonic function of the distance between adjacent nanoscale heat sources but reaches the highest value when this distance is comparable to the phonon mean free path. This is due to the competition of two thermal transport processes: quasiballistic transport when phonons escape from the nanoscale heat source and the scattering among phonons originating from the adjacent nanoscale heat source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.