Abstract

The ferrofluid emulsion, made of kerosene-based ferrofluid droplets suspended in nonmiscible aviation oil, demonstrates experimentally the nonmonotonic dependence of the effective magnetic permeability as a function of the uniform static magnetic field. In weak fields the emulsion permeability rapidly grows; it reaches its maximum at fields on the order of 1kA/m; after that, it decays to zero. The theoretical explanation of the effect, as we show here, could be based on the following idea: In a weak magnetic field the growth of the induced droplet magnetic moment is faster than the linear one due to the droplet elongation accompanied by the reduction of the demagnetizing field. Further increase of the external magnetic field strength cannot lead to a significant decrease of the demagnetizing field, as the droplets are already highly elongated. On the other hand, the magnetic susceptibility of the ferrofluid reduces with the field strength. Thus, the effective magnetic permeability of the ferrofluid suspension starts decreasing. The developed theoretical model describes well the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.