Abstract
AbstractWe focus on the solutions of second-order stable linear difference equations and demonstrate that their behavior can be non-monotone and exhibit peak effects depending on initial conditions. The results are applied to the analysis of the accelerated unconstrained optimization method—the Heavy Ball method. We explain non-standard behavior of the method discovered in practical applications. In addition, such non-monotonicity complicates the correct choice of the parameters in optimization methods. We propose to overcome this difficulty by introducing new Lyapunov function which should decrease monotonically. By use of this function convergence of the method is established under less restrictive assumptions (for instance, with the lack of convexity). We also suggest some restart techniques to speed up the method’s convergence.KeywordsDifference equationsOptimization methodsNon-monotone behaviorThe Heavy Ball methodLyapunov functionGlobal convergence
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.