Abstract

When the symmetry of axisymmetric Taylor vortex flow is broken, time-periodic wavy vortex flow (WVF) appears and quite quickly becomes globally chaotic (in the Lagrangian sense) with increasing Reynolds number. Previously published simulations of WVF suggest that beyond a certain Re, nonmixing vortex cores reappear in the flow and grow in size with further increases in Re. This reappearance occurs well into the inertia-dominated flow regime and coincides with a decrease in axial fluid dispersion and an increase in flow symmetry as measured by certain Eulerian symmetry measures. In this brief paper, we present experimental dye-reaction visualization results from two WVF wave states in the region where vortex cores are predicted numerically. The experimental results show unambiguous visual evidence for the existence of vortex cores and provide visual agreement with the numerical results. They are significant in that experimental evidence for these structures in WVF has not been reported before. The results also suggest that vortex-to-vortex transport occurs via sheetlike structures that are pulled from one vortex to another and become wrapped around the vortex cores before being stretched to the point at which molecular diffusion dominates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.