Abstract
We show how all non-MHV tree-level amplitudes in 0 =< N =< 4 gauge theories can be obtained directly from the known MHV amplitudes using the scalar graph approach of Cachazo, Svrcek and Witten. Generic amplitudes are given by sums of inequivalent scalar diagrams with MHV vertices. The novel feature of our method is that after the `Feynman rules' for scalar diagrams are used, together with a particular choice of the reference spinor, no further helicity-spinor algebra is required to convert the results into a numerically usable form. Expressions for all relevant individual diagrams are free of singularities at generic phase space points, and amplitudes are manifestly Lorentz- (and gauge-) invariant. To illustrate the method, we derive expressions for n-point amplitudes with three negative helicities carried by fermions and/or gluons. We also write down a supersymmetric expression based on Nair's supervertex which gives rise to all such amplitudes in 0 =< N =< 4 gauge theories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.