Abstract
A geometric approach to the study of natural two-component generalizations of the periodic Hunter–Saxton is presented. We give rigorous evidence of the fact that these systems can be realized as geodesic equations with respect to symmetric linear connections on the semidirect product of a suitable subgroup of the diffeomorphism group of the circle \({{\text{\sc Diff}}(\mathbb{S})}\) with the space of smooth functions on the circle. An immediate consequence of this approach is a well-posedness result of the corresponding Cauchy problems in the smooth category.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.