Abstract

Understanding the electronic structure and charge carrier dynamics of supported clusters is important due to their many potential applications in photochemistry and catalysis. In this investigation, photoemission spectroscopy, in conjunction with femtosecond extreme ultraviolet (XUV) laser pulses, is used to investigate the electronic structure and ultrafast charge carrier dynamics at a Si(100) surface decorated with Zn clusters. Static photoemission spectroscopy is used to investigate the changes in the electronic structure as the dimensionality of the Zn is increased from small clusters composed of a very few atoms to metallic Zn particles. Furthermore, femtosecond optical-pump XUV-probe photoemission spectroscopy is employed to induce a charge transfer from the p-Si(100) substrate to the Zn clusters and to measure in real time the charge trapping at the Zn cluster as well as the subsequent charge relaxation. The ultrafast charge carrier dynamics are also investigated for small clusters and metallic Zn particles. Significant transient charging of the Zn clusters after excitation of the Si(100) substrate by 800 nm light is observed for Zn coverages greater than 0.12 ML Zn, which coincides with the formation of a Schottky barrier at the interface between the Zn particle and the p-Si(100) substrate. The transient signals show that the charge trapping time at the Zn cluster varies with the cluster size, which is rationalized based on the electronic structure of the cluster as well as the band energy alignment at the Zn cluster-Si(100) junction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call