Abstract

In this paper, we demonstrate dynamic optical beam-steering of a band-edge chiral nematic liquid crystal (LC) laser that does not involve any change in the configuration of the helical structure. This beam-steering is achieved by exploiting the circular polarisation of the LC laser in combination with tuneable nematic LC phase shifters and fixed polarisation gratings. Experimental results are presented, showing the optical steering of the LC laser emission to four separate discrete spatial positions and, using simulations based on Jones calculus, we explain the appearance and relative intensities of other minor spots that appear around the primary beam. Compared with other approaches of beam-steering an LC laser, this method does not result in an alteration of the laser wavelength, does not change the internal cavity structure of the laser, and has a minimal impact on the intensity of the laser emission. In addition, the whole system (except for the solid-state pump source) is comprised of thin films that are either liquid crystalline or polymers, which provides a tangible route towards a more compact and integrated optically steerable LC laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.