Abstract

A method for microscanning in imaging sensors is developed that allows liquid-crystal beam steerers to be used as nonmechanical microscan devices. This submicroscanning method involves using the beam steerers to shift images on a focal-plane array by a fraction of the amount used in typical microscan methods. Interpolation techniques based on interlaced sampling are used to produce images free of aliasing out to twice the Nyquist frequency determined by the focal-plane array. Since a continuous phase ramp is produced by the liquid-crystal beam steerer, dispersion effects due to the gratinglike nature of the devices are avoided. Simulations for both one- and two-dimensional cases are presented, as well as experimental results using a 3- to 5-μm imaging sensor and a liquid-crystal beam steerer designed for operation at 1.064 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.