Abstract

We investigate non-Markovianity measure using two-time correlation functions for open quantum systems. We define non-Markovianity measure as the difference between the exact two-time correlation function and the one obtained in the Markov limit. Such non-Markovianity measure can easily be measured in experiments. We found that the non-Markovianity dynamics in different time scale crucially depends on the system-environment coupling strength and other physical parameters such as the initial temperature of the environment and the initial state of the system. In particular, we obtain the short-time and long-time behaviors of non-Markovianity for different spectral densities. We also find that the thermal fluctuation always reduce the non-Markovian memory effect. Also, the non-Markovianity measure shows non-trivial initial state dependence in different time scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.