Abstract

We present a detailed investigation of the dynamics of two physically different qubit models, dephasing under the effect of an ultracold atomic gas in a Bose-Einstein condensed (BEC) state. We study the robustness of each qubit probe against environmental noise; even though the two models appear very similar at a first glance, we demonstrate that they decohere in a strikingly different way. This result holds significance for studies of reservoir engineering as well as for using the qubits as quantum probes of the ultracold gas. For each model we study whether and when, upon suitable manipulation of the BEC, the dynamics of the qubit can be described by a (non-)Markovian process and consider the the effect of thermal fluctuations on the qubit dynamics. Finally, we provide an intuitive explanation for the phenomena we observe in terms of the spectral density function of the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.