Abstract
We study the non-Markovian Brownian motion of an electrically charged harmonic oscillator through the action of both a constant magnetic field and time-dependent force fields. The generalized Langevin equation with a friction memory kernel is used to derive the generalized phase-space Fokker-Planck equation for the harmonic oscillator in the absence and in the presence of time-dependent force fields. To achieve our goal, the characteristic function method is applied to obtain, in an accurate way, the theoretical description of the problem. We explicitly calculate the correlation and cross-correlation functions for the position and velocity vectors. We show that the relevant physics behind the theory is contained in the generalized diffusion coefficient, which accounts for the natural coupling between both the harmonic oscillator and magnetic field. Our theoretical results are compared with those previously reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.