Abstract

Logically satisfactory methods for narrowing the range of social choice can be designed. For example, the SDF which transforms (S, R) into P(S, R), that is, the Pareto rule, satisfies all the conditions imposed on C(·) in Theorem 9: The Pareto rule is normal. For if x ∈ P(S, R) and y ∈ S, then y cannot be Pareto superior to x; so x ∈ P({x, y}, R), and α2 is satisfied. If x ∈ S and x ∈ P({x, y}, R) for all y ∈ S, no y in S is Pareto superior to x, and therefore, x ∈ P(S, R); so γ2 is satisfied. The Pareto rule is clearly neutral and anonymous; it is unbiased among the alternatives and among the individuals. The Pareto rule is obviously non-imposed. The Pareto rule is nonmanipulable. For if xPiy, P({x, y}, R) must be either {x} or {x, y}. If P({x, y}, R) = {x, y}, there is an individual j ≠ i for whom yRjx. Consequently no misrepresentation by i can force y out of the set of optima, and therefore the rule is cheatproof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.