Abstract
Up to now, for a given PDE system, we have considered the calculation and application of its local symmetries (point, contact or higher-order) as well as the calculation of its local conservation laws. In particular, it has been shown how to use local symmetries to map solutions to other solutions; how to use local symmetries of given and target PDEs as an aid in relating them; how to use point or contact symmetries to determine whether a given PDE system can be mapped invertibly to some PDE system belonging to a target class of PDE systems that is completely characterized by its point symmetries as well as determine an explicit mapping when one exists; how to use multipliers yielding local conservation laws to determine whether a given nonlinear PDE system can be mapped invertibly to some linear PDE system as well as determine a specific mapping when one exists. Moreover, as it is well known, local symmetries can be used to find specific solutions (invariant solutions) of PDEs; this application is considered and extended in Chapter 5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.