Abstract
We investigate whether paradigmatic measurements for quantum state tomography, namely mutually unbiased bases and symmetric informationally complete measurements, can be employed to certify quantum correlations. For this purpose, we identify a simple and noise-robust correlation witness for entanglement detection, steering, and nonlocality that can be evaluated based on the outcome statistics obtained in the tomography experiment. This allows us to perform state tomography on entangled qutrits, a test of Einstein-Podolsky-Rosen steering and a Bell inequality test, all within a single experiment. We also investigate the trade-off between quantum correlations and subsets of tomographically complete measurements as well as the quantification of entanglement in the different scenarios. Finally, we perform a photonics experiment in which we demonstrate quantum correlations under these flexible assumptions, namely with both parties trusted, one party untrusted and both parties untrusted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.