Abstract

The framework of generalized probabilistic theories (GPT) is a widely-used approach for studying the physical foundations of quantum theory. The standard GPT framework assumes the no-restriction hypothesis, in which the state space of a physical theory determines the set of measurements. However, this assumption is not physically motivated. In Janotta and Lal [Phys. Rev. A 87, 052131 (2013)], it was shown how this assumption can be relaxed, and how such an approach can be used to describe new classes of probabilistic theories. This involves introducing a new, more general, definition of maximal joint state spaces, which we call the generalised maximal tensor product. Here we show that the generalised maximal tensor product recovers the standard maximal tensor product when at least one of the systems in a bipartite scenario obeys the no-restriction hypothesis. We also show that, under certain conditions, relaxing the no-restriction hypothesis for a given state space does not allow for stronger non-locality, although the generalized maximal tensor product may allow new joint states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.