Abstract

We continue the study of Lax integrable equations. We consider four three-dimensional equations: (1) the rdDym equation uty = uxuxy − uyuxx, (2) the Pavlov equation uyy = utx + uyuxx − uxuxy, (3) the universal hierarchy equation uyy = utuxy − uyutx, and (4) the modified Veronese web equation uty = utuxy − uyutx. For each equation, expanding the known Lax pairs in formal series in the spectral parameter, we construct two differential coverings and completely describe the nonlocal symmetry algebras associated with these coverings. For all four pairs of coverings, the obtained Lie algebras of symmetries manifest similar (but not identical) structures; they are (semi)direct sums of the Witt algebra, the algebra of vector fields on the line, and loop algebras, all of which contain a component of finite grading. We also discuss actions of recursion operators on shadows of nonlocal symmetries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.