Abstract

The equation x+3xx+x3=0 is well known in many areas of mathematics and physics. It possesses the algebra sl(3,R) of Lie point symmetries, hence is equivalent to the equation for a free particle, and both left and right Painleve series. We investigate two higher-dimensional analogs in terms of their symmetry and singularity structures. We find a drastic reduction in symmetry and a loss of some of the singularity properties. From the nonlocal symmetries we are able to determine the complete symmetry group as being represented by a five-dimensional Abelian algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.