Abstract

We study theoretically the properties of two Bose-Einstein condensates in different spin states, represented by a double Fock state. Individual measurements of the spins of the particles are performed in transverse directions, giving access to the relative phase of the condensates. Initially, this phase is completely undefined, and the first measurements provide random results. But a fixed value of this phase rapidly emerges under the effect of the successive quantum measurements, giving rise to a quasiclassical situation where all spins have parallel transverse orientations. If the number of measurements reaches its maximum (the number of particles), quantum effects show up again, giving rise to violations of Bell type inequalities. The violation of Bell-Clauser-Horne-Shimony-Holt inequalities with an arbitrarily large number of spins may be comparable (or even equal) to that obtained with two spins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.