Abstract
Bayesian approaches, or maximum a posteriori (MAP) methods, are effective in providing solutions to ill-posed problems in image reconstruction. Based on Bayesian theory, prior information of the target image is imposed on image reconstruction to suppress noise. Conventionally, the information in most of prior models comes from weighted differences between pixel intensities within a small local neighborhood. In this paper, we propose a novel nonlocal prior such that differences are computed over a broader neighborhoods of each pixel with weights depending on its similarity with respect to the other pixels. In such a way connectivity and continuity of the image is exploited. A two-step reconstruction algorithm using the nonlocal prior is developed. The proposed nonlocal prior Bayesian reconstruction algorithm has been applied to emission tomographic reconstructions using both computer simulated data and patient SPECT data. Compared to several existing reconstruction methods, our approach shows better performance in both lowering the noise and preserving the edges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.