Abstract

This paper investigates the nonlinear bending behavior of a single-layer rectangular graphene sheet subjected to a transverse uniform load in thermal environments. The single-layer graphene sheet (SLGS) is modeled as a nonlocal orthotropic plate which contains small scale effect. Geometric nonlinearity in the von Karman sense is adopted. The thermal effects are included and the material properties are assumed to be size dependent and temperature dependent, and are obtained from molecular dynamics (MD) simulations. The small scale parameter e 0 a is estimated by matching the deflections of graphene sheets observed from the MD simulation results with the numerical results obtained from the nonlocal plate model. The numerical results show that the temperature change as well as the aspect ratio has a significant effect on the nonlinear bending behavior of SLGSs. The results reveal that the small scale parameter reduces the static large deflections of SLGSs, and the small scale effect also plays an important role in the nonlinear bending of SLGSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.