Abstract

Mathematical morphology (MM) offers a wide range of operators to address various image processing problems. These operators can be defined in terms of algebraic (discrete) sets or as partial differential equations (PDEs). In this paper, we introduce a nonlocal PDEs-based morphological framework defined on weighted graphs. We present and analyze a set of operators that leads to a family of discretized morphological PDEs on weighted graphs. Our formulation introduces nonlocal patch-based configurations for image processing and extends PDEs-based approach to the processing of arbitrary data such as nonuniform high dimensional data. Finally, we show the potentialities of our methodology in order to process, segment and classify images and arbitrary data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.