Abstract

We prove that nonlocal minimal graphs in the plane exhibit generically stickiness effects and boundary discontinuities. More precisely, we show that if a nonlocal minimal graph in a slab is continuous up to the boundary, then arbitrarily small perturbations of the far-away data produce boundary discontinuities. Hence, either a nonlocal minimal graph is discontinuous at the boundary, or a small perturbation of the prescribed conditions produces boundary discontinuities. The proof relies on a sliding method combined with a fine boundary regularity analysis, based on a discontinuity/smoothness alternative. Namely, we establish that nonlocal minimal graphs are either discontinuous at the boundary or their derivative is H\"older continuous up to the boundary. In this spirit, we prove that the boundary regularity of nonlocal minimal graphs in the plane "jumps" from discontinuous to $C^{1,\gamma}$, with no intermediate possibilities allowed. In particular, we deduce that the nonlocal curvature equation is always satisfied up to the boundary. As an interesting byproduct of our analysis, one obtains a detailed understanding of the "switch" between the regime of continuous (and hence differentiable) nonlocal minimal graphs to that of discontinuous (and hence with differentiable inverse) ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call