Abstract
We present the interplay between synchronization of networks with heterogeneous delays and the greatest common divisor (GCD) of loops composing the network. We distinguish between two types of networks; (I) chaotic networks and (II) population dynamic networks with periodic activity driven by external stimuli. For type (I), in the weak chaos region, the units of a chaotic network characterized by GCD=1 are in a chaotic zero-lag synchronization, whereas for GCD>1, the network splits into GCD-clusters in which clustered units are in zero-lag synchronization. These results are supported by simulations of chaotic systems, self-consistent and mixing arguments, as well as analytical solutions of Bernoulli maps. Type (II) is exemplified by simulations of Hodgkin Huxley population dynamic networks with unidirectional connectivity, synaptic noise and distribution of delays within neurons belonging to a node and between connecting nodes. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the network splits into clusters equal to the greatest common divisor of loops composing the network (spatial) and the periodicity of the external stimuli (temporal). The results suggest that neural information processing may take place in the transient to synchronization and imply a much shorter time scale for the inference of a perceptual entity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.