Abstract

Two-dimensional (2D) magnets are crucial in the construction of 2D magnetic and spintronic devices. Many devices, including spin valves and multiple tunneling junctions, have been developed by vertically stacking 2D magnets with other functional blocks. However, owing to limited local interactions at the interfaces, the device structures are typically extremely complex. To solve this problem, the nonlocal manipulation of magnetism may be a good solution. In this study, we use the magneto-optical Kerr effect technique to demonstrate the nonlocal manipulation of magnetism in an itinerant 2D ferromagnet, Fe3GeTe2 (FGT), whose magnetism can be manipulated via an antiferromagnet/ferromagnet interface or a current-induced spin-orbital torque placed distant from the local site. It is discovered that the coupling of a small piece of MnPS3 (∼40 μm2) with FGT can significantly enhance the coercive field and emergence of exchange bias in the entire FGT flake (∼2000 μm2). Moreover, FGT flakes with different thicknesses have the same coercive field at low temperatures if they are coupled together. Our study provides an understanding of the basic magnetism of 2D itinerant ferromagnets as well as opportunities for engineering magnetism with an additional degree of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.