Abstract
In this paper, we first develop the fractional Trudinger–Moser inequality in singular case and then we use it to study the existence and multiplicity of solutions for a class of perturbed fractional Kirchhoff type problems with singular exponential nonlinearity. Under some suitable assumptions, the existence of two nontrivial and nonnegative solutions is obtained by using the mountain pass theorem and Ekeland’s variational principle as the nonlinear term satisfies critical or subcritical exponential growth conditions. Moreover, the existence of ground state solutions for the aforementioned problems without perturbation and without the Ambrosetti–Rabinowitz condition is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Mathematics & Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.